5 research outputs found

    Mapping all classical spin models to a lattice gauge theory

    Full text link
    In our recent work [Phys. Rev. Lett. 102, 230502 (2009)] we showed that the partition function of all classical spin models, including all discrete standard statistical models and all Abelian discrete lattice gauge theories (LGTs), can be expressed as a special instance of the partition function of a 4-dimensional pure LGT with gauge group Z_2 (4D Z_2 LGT). This provides a unification of models with apparently very different features into a single complete model. The result uses an equality between the Hamilton function of any classical spin model and the Hamilton function of a model with all possible k-body Ising-type interactions, for all k, which we also prove. Here, we elaborate on the proof of the result, and we illustrate it by computing quantities of a specific model as a function of the partition function of the 4D Z_2 LGT. The result also allows one to establish a new method to compute the mean-field theory of Z_2 LGTs with d > 3, and to show that computing the partition function of the 4D Z_2 LGT is computationally hard (#P hard). The proof uses techniques from quantum information.Comment: 21 pages, 21 figures; published versio

    Markovian Master Equations: A Critical Study

    Full text link
    We derive Markovian master equations of single and interacting harmonic systems in different scenarios, including strong internal coupling. By comparing the dynamics resulting from the corresponding Markovian master equations with exact numerical simulations of the evolution of the global system, we precisely delimit their validity regimes and assess the robustness of the assumptions usually made in the process of deriving the reduced dynamics. The proposed method is sufficiently general to suggest that the conclusions made here are widely applicable to a large class of settings involving interacting chains subject to a weak interaction with an environment.Comment: 40 pages, 14 figures, final versio

    Generalized Toric Codes Coupled to Thermal Baths

    Get PDF
    We have studied the dynamics of a generalized toric code based on qudits at finite temperature by finding the master equation coupling the code's degrees of freedom to a thermal bath. As a consequence, we find that for qutrits new types of anyons and thermal processes appear that are forbidden for qubits. These include creation, annihilation and diffusion throughout the system code. It is possible to solve the master equation in a short-time regime and find expressions for the decay rates as a function of the dimension dd of the qudits. Although we provide an explicit proof that the system relax to the Gibbs state for arbitrary qudits, we also prove that above a certain crossing temperature, qutrits initial decay rate is smaller than the original case for qubits. Surprisingly this behavior only happens with qutrits and not with other qudits with d>3d>3.Comment: Revtex4 file, color figures. New Journal of Physics' versio
    corecore